
Experiment 3 

 

Quantum Chemical calculation: 
The potential energy curves and the orbitals of H2+ 

 

1. Objectives 
A quantum chemistry solver is used to obtain the energy and orbitals of one 

of the simplest molecules, H2
+, and the formation of chemical bonding is 

analyzed from a quantum-mechanical point of view. 

 

(Refer to Sections 6.1 and 6.2 in Oxtoby 7th ed.) 

 

2. Introduction and Background information 
 

2-1) Quantum picture of the chemical bond 

Chemical bond is the attraction to form molecules or solids and it represents 

the arrangement of atoms and indicates the geometries of molecules. From a 

classical point of view, chemical bonding has been represented by a model 

known as the Lewis concept. However, this model cannot explain the electrons 

hold the molecule together despite of repulsive force pushing nuclei apart. 

Also some molecular properties cannot be described by this classical argument.  

Depending on the distance between the atoms, the energy of the molecule 

varies, and chemical bonds are formed at distances that maintain the lowest 

energy. Let’s consider the progress of forming bond on the simplest system 

H2. 



 
Figure 1 

In this figure, at distance Re, H2 has minimum energy and it is called bond 

length and De is bond dissociation energy. However, according to the 

uncertainty principle, the minimum energy that can be experimentally 

measured is higher than this level, which has E0. Then measured energy for 

bond dissociation is D0. The point at Re is useful for constructing model 

potentials and optimizing molecular geometry in calculations. 

The effective potential energy can be divided into the following factors in 

order to explain how the negative charge existing between nuclei can 

overcome the Coulomb repulsion making the nuclei attract toward each other, 

which maintains the structure of the molecule; Coulomb repulsion between 

two protons, Coulomb repulsion between two electrons, Coulomb attraction 

between protons and electrons and kinetic energies of electrons. Then, we can 

express effective potential term as sum of average kinetic energy of electrons 

and average Coulomb interactions (electron-electron, nuclear-nuclear, 

electron-nuclear) 

 

 
 



 
Figure 2 

Above figure shows the contribution of average kinetic energy and average 

potential energy (Coulomb interactions) to effective potential energy. The 

change of the 𝑉𝑉� (eff) will be described in three intervals: 

 

(Interval A) 

 
Figure 4 

 

 
Figure 5 

Black dots: protons, Yellow dots: electrons. 

Solid line indicates interaction between the nucleus and the electron which 

belongs to same atom, while dashed line indicates interaction between the 

nucleus and the electron which was belongs to the other atom. 



 

𝑉𝑉� : As the distance between atoms becomes closer, one electron begins to 

interact with a proton at another atom, and the amount of interaction with a 

proton at the same atom decreases. The average potential size increases. 

 

 
Figure 6 

 

 
Figure 7 

 

: As discussed in Particle-in-a-box model, the electron's kinetic energy 

decreases as the size of the box is increased (eq 4.37 in Oxtoby 7th ed). 

 

Since the degree of decrease in kinetic energy is greater than the degree of 

increase in potential energy, the effective potential energy decreases and 

chemical bonding begins to occur. 

  

(Interval B) 

𝑉𝑉� : As the distances between the electron and the nuclei are decrease, average 

potential energy decreases. 
 

: The confinement of the electron to the smaller volume yields the increase 

of the average kinetic energy. 

 



(Interval C) 

𝑉𝑉� : If distance between two nuclei is too small, their high repulsion energy 

increase the average potential energy. 
 

 : The confinement of the electron to the smaller volume yields the increase 

of the average kinetic energy. 

 

One of the purpose of this class is quantitative quantum chemical calculation 

of curves at the Figure 1 and Figure2. To do so, we need to solve the well-

known equation, Schrodinger's equation. By solving this equation, we can 

obtain the wave functions of the electrons and their corresponding energies 

in a given system. In section 2-2) we will look at the basic quantum mechanical 

theories for quantitative computation of this curve. 

 

 

2-2) Quantum chemical calculation 

(*This section has brief explanation of a quantum chemistry (or mechanics). 

If you want to study more about this subject, refer to chapter 4, 5) 

 

Several experiments have confirmed wave-particle duality, and it has been 

found that the motion of the particles is not explained by the classical 

mechanics. In classical mechanics, the motion of an object is described 

according to Newton's law of motion, while the Schrödinger equation plays a 

role in quantum mechanics. You can refer to chapter 4(p168~p169) of Oxtoby 

7th ed for the origin of the Schrödinger equation and the validity of it.  

 

 
 

How the physical system is organized determines the form of 𝐻𝐻� which is 

called Hamiltonian operator. Then, “solving the Schrödinger equation” means 



that finding pair of ψ and corresponding E which satisfies this differential 

equation and they are the solutions of it. Generally, it has multiple solutions. 

Then we write as 

 (𝑖𝑖 are integers) 

 

ψ indicates wave function, and it is the amplitude of the wave related to the 

motion of a particle. In particular, the wave function in one electron picture is 

called orbital. It can have positive, negative or zero values. The points or 

region with the zero amplitude of the wave function are called nodes. The 

wave function cannot be measured directly. Instead, we use ψ2  as a 

probability density of the particle and ψ(x, y, z)2𝑑𝑑𝑉𝑉 is the probability that the 

particle exists in a small volume 𝑉𝑉. This probabilistic interpretation have shown 

consistent result of the motion on a microscopic scale.  

 E is the energy associated with this wave function. Each wave function has 

corresponding energy value, which means the system has discrete values. It 

shows that the energy quantization is the consequence of Schrödinger 

equation. The wave function corresponds to the lowest energy value is called 

ground state and others are called excited states.  

 One of the example system called “Particle-in-a-box” can be described by the 

Schrödinger equation and it can be solved exactly (or analytically). You can 

practice solving the Schrödinger equation for this model (pp 172–4, Oxtoby 

7th ed). 

 

2-3) Using quantum chemical solver 

The Schrodinger equation is a kind of differential equation and can be solved 

analytically for simple systems, such as the particle-in-a-box model, the 

hydrogen atom system or the H2
+ molecule system to be covered in the class. 

Solving the differential equation analytically means that the exact solution can 

be obtained by algebraic operations of the symbols in the equation, calculus, 

trigonometry, or other mathematical techniques. However, the Schrödinger 

equations of many other systems are complex to solve analytically, and 



therefore requires a numerical analysis to obtain approximate solutions instead 

of exact solutions. Since, it takes too much time to get the solutions manually 

by numerical methods, some research institutes design algorithms of 

numerical analysis and obtain the solution with HPC (High performance 

computing). Many solvers have been developed which can calculate the 

various physical properties of molecules by devising numerical methods and 

algorithms. These solvers can expand the quantum mechanical theories and 

calculate the physical properties of the material. For example, the three-

dimensional structures and the energies of the molecules which is in ground 

and excited state, IR frequencies, and the transition states and so on.  

The solver we will use in this class is ACE-Molecule, which is being developed 

by the Prof. Woo Youn Kim’s Laboratory in KAIST chemistry department. 

To obtain the curves of Figure 1 and Figure 2 using quantum chemical 

calculations, we need an important assumption of the Born Oppenheimer 

approximation. The curves discussed in the previous section 2-1) also assumed 

the Born-Oppenheimer approximation. 

 

Born-Oppenheimer approximation 

The mass of the nucleus is much larger than that of the electron. Thus, we can 

assume that the motion of electron is much faster than that of the electron, 

which means the positions of the nuclei can be fixed. Then, the kinetic energy 

of the nucleus is zero and the nucleus-nucleus Coulomb potential energy is 

constant. Based on this Born-Oppenheimer approximation, the energy of a 

molecule can be calculated as following two steps. 

 

1) Solve the equation for electronic Hamiltonian first. Then we get the 

orbitals (single electron’s wave function) and their energies 

2) To get the total energy of the molecule, add the nucleus-nucleus 

Coulomb potential to the orbital energies. 

 

Following is the schematic diagram to calculate the effective potential energy 



curve of diatomic molecules. 

 

 

3. Requisites 
3-1) ACE-Molecule solver, installed in a remote server EDISON. 

3-2) An orbital viewer program VESTA. 

 

4. Procedure 
(Refer to the PPT file for details) 

1) Prepare input files: 

 One input file and 10 structure files 

2) Sign in to EDISON (chem.edison.re.kr). 

Account information will be given by the TA. 

3) Select the ACE-Molecule (KDFT ver2.0.3) solver 

4) Submit your jobs. 

One input file and a structure file comprise one simulation job. 

5) Download output files and analyze them. 


